Entropy of Closure Operators
نویسنده
چکیده
The entropy of a closure operator has been recently proposed for the study of network coding and secret sharing. In this paper, we study closure operators in relation to their entropy. We first introduce four different kinds of rank functions for a given closure operator, which determine bounds on the entropy of that operator. This yields new axioms for matroids based on their closure operators. We also determine necessary conditions for a large class of closure operators to be solvable. We then define the Shannon entropy of a closure operator, and use it to prove that the set of closure entropies is dense. Finally, we justify why we focus on the solvability of closure operators only. AMS 2010 Subject classification: 94A17, 06A15, 05B35.
منابع مشابه
Entropy of Closure Operators and Network Coding Solvability
The entropy of a closure operator has been recently proposed for the study of network coding and secret sharing. In this paper, we study closure operators in relation to their entropy. We first introduce four different kinds of rank functions for a given closure operator, which determine bounds on the entropy of that operator. This yields new axioms for matroids based on their closure operators...
متن کاملM-FUZZIFYING MATROIDS INDUCED BY M-FUZZIFYING CLOSURE OPERATORS
In this paper, the notion of closure operators of matroids is generalized to fuzzy setting which is called $M$-fuzzifying closure operators, and some properties of $M$-fuzzifying closure operators are discussed. The $M$-fuzzifying matroid induced by an $M$-fuzzifying closure operator can induce an $M$-fuzzifying closure operator. Finally, the characterizations of $M$-fuzzifying acyclic matroi...
متن کاملCHARACTERIZATION OF L-FUZZIFYING MATROIDS BY L-FUZZIFYING CLOSURE OPERATORS
An L-fuzzifying matroid is a pair (E, I), where I is a map from2E to L satisfying three axioms. In this paper, the notion of closure operatorsin matroid theory is generalized to an L-fuzzy setting and called L-fuzzifyingclosure operators. It is proved that there exists a one-to-one correspondencebetween L-fuzzifying matroids and their L-fuzzifying closure operators.
متن کاملFrom torsion theories to closure operators and factorization systems
Torsion theories are here extended to categories equipped with an ideal of 'null morphisms', or equivalently a full subcategory of 'null objects'. Instances of this extension include closure operators viewed as generalised torsion theories in a 'category of pairs', and factorization systems viewed as torsion theories in a category of morphisms. The first point has essentially been treated in [15].
متن کاملCategories of lattice-valued closure (interior) operators and Alexandroff L-fuzzy topologies
Galois connection in category theory play an important role inestablish the relationships between different spatial structures. Inthis paper, we prove that there exist many interesting Galoisconnections between the category of Alexandroff $L$-fuzzytopological spaces, the category of reflexive $L$-fuzzyapproximation spaces and the category of Alexandroff $L$-fuzzyinterior (closure) spaces. This ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1307.6059 شماره
صفحات -
تاریخ انتشار 2013